NanoAmor Nanoparticles:
If you are interested in a nanomaterial that we do not currently offer, we may be able to do a custom manufacturing run to produce it. This approach is typically better-suited for our industrial customers, since it requires (a) a minimum of kg-sized quantities ordered, (b) signification overhead costs, and (c) months of lead time. If interested, please contact sales with details of what you are looking for. Some of the popular 'customization' options include dispersion-aiding coatings, solutions, or hard aggregates. Higher purities are also possible.
For more detailed information, including specific recipes and equipment/chemical recommendations, we recommend a literature search in scientific journals. Our links may provide a good starting point for dispersion basics and journals.
When deciding which materials to buy, note that our wet chemistry synthesized metal nanoparticles already come with hydrophilic or hydrophobic coatings, i.e, the 10 nm and 30 nm Ag, 30 nm Au, 30 nm and 500 nm Ti, 35 nm Cr, Ta and W. For those interested, we can also offer some metals (Ag, Al, Fe, Ni, Co, Zn) synthesized by pyrolysis without oxygen passivation and dispersed in mineral oil. Upon request we can also offer metal oxide or ceramic nanoparticles without hydroxyl groups, which can hinder sintering applications.
Due to their high surface area and their dangling bonds, nanoparticles have a tendency to agglomerate and to absorb moisture, oxygen, nitrogen, etc. These will lead to a number of unwanted side-effects, including a larger overall size and a reduced wetting ability when dispersing. Thus, when receiving your nanoparticles, nanotubes or nanorods from NanoAmor
some of the following steps, to ensure that you get the maximum benefit out of your purchase:
Ultrasonication. This will both break up agglomeration and help with degassing. The recommended sonicators are the 'probe'-type or 'horn'-type models (not the 'bath'-type), with a power of around 700W to 1kW.
Surfactant coatings. A proper surfactant coating will help prevent the attaction between nanoparticles, thus preventing agglomeration and helping achieve a disperse and stable solution. Depending on application, look for a hydrophilic surfact such as PVP, or a hydrophobic surfactant such as oleic acid. For oxides, one can also try adjusting pH values to 7.
Milling. Ball milling's blending and mixing will help obtain a good overall homogeneity. This is especially important for nanoparticles without surfactants, or for aggregated nanoparticles, or for high-viscosity mixtures. However, it may not be well suited for metal particles.
Coupling. When creating a composite using our nanoparticles, a coupling agent such as liquid epoxy is needed to bind the particles to the matrix. This can achieve nanoparticle-matrix interfaces that are compatible, conductive and strong.
Stabilization. When creating a suspension using 'heavy' nanoparticles, additives may be needed to stabilize the solution.
Popular Movies
Recent Updates
Recent Movies |
Watch Online Full Movie Without buffering
DISCLAIMER:- All the videos on our website are programmatically retrieved using Youtube.com API( There are Links to Embedded YouTube Videos Are Covered By YouTube Terms of Service.).We do not upload or own the videos.If any video is violating copyrighted content issue contact anandcivil50@gmail.com.We remove postings as soon as we can
Home »
» Custom Manufacturing Runs:Some Tips on Using NanoAmor Nanoparticles: